11,024 research outputs found

    Interoperability in the GENESIS 3.0 Software Federation : the NEURON Simulator as an Example

    Get PDF
    © 2013 Cornelis et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Poster presented at CNS 2013Non peer reviewe

    A Monitoring Network for Spectrum Governance

    Get PDF
    Dynamic Spectrum Access (DSA) is an exciting new technology, which has introduced a paradigm shift in spectrum access. As a result it also changes the role of the regulator. On one hand the scarce radio spectrum should be used in an optimal way, so that society is best served. On the other hand interference between users and between networks should be avoided. For that reason rules have to be defined for spectrum use. This topic is called spectrum governance. For evaluation and to check whether devices obey the rules, a monitoring system is needed. In this paper, we propose to use a fleet of mobile monitoring vehicles for this purpose.\u

    An Opportunistic Error Correction Layer for OFDM Systems

    Get PDF
    In this paper, we propose a novel cross layer scheme to lower power\ud consumption of ADCs in OFDM systems, which is based on resolution\ud adaptive ADCs and Fountain codes. The key part in the new proposed\ud system is that the dynamic range of ADCs can be reduced by\ud discarding the packets which are transmitted over 'bad' sub\ud carriers. Correspondingly, the power consumption in ADCs can be\ud reduced. Also, the new system does not process all the packets but\ud only processes surviving packets. This new error correction layer\ud does not require perfect channel knowledge, so it can be used in a\ud realistic system where the channel is estimated. With this new\ud approach, more than 70% of the energy consumption in the ADC can be\ud saved compared with the conventional IEEE 802.11a WLAN system under\ud the same channel conditions and throughput. The ADC in a receiver\ud can consume up to 50% of the total baseband energy. Moreover, to\ud reduce the overhead of Fountain codes, we apply message passing and\ud Gaussian elimination in the decoder. In this way, the overhead is\ud 3% for a small block size (i.e. 500 packets). Using both methods\ud results in an efficient system with low delay

    Opportunistic Error Correction for WLAN Applications

    Get PDF
    The current error correction layer of IEEE 802.11a WLAN is designed\ud for worst case scenarios, which often do not apply. In this paper,\ud we propose a new opportunistic error correction layer based on\ud Fountain codes and a resolution adaptive ADC. The key part in the\ud new proposed system is that only packets are processed by the\ud receiver chain which have encountered ``good'' channel conditions.\ud Others are discarded. With this new approach, around 23\frac{2}{3}\ud of the energy consumption can be saved compared with the\ud conventional IEEE 802.11a WLAN system under the same channel\ud conditions and throughput

    Adjacent Channel Interference in UMTS Networks

    Get PDF
    One of the purposes of receive filtering in a Universal Mobile Telecommunication System (UMTS) handset receiver is to attenuate out-of-channel interference to provide channel selectivity. A UMTS handset receiver using a receive filter adaptive on out-of-channel interference level can be more computationally efficient than a handset with a fixed receive filter provided that the hand-set operates in low out-of-channel interference conditions often enough. The UMTS Adjacent Channel Selectivity (ACS) test case requires the adaptive receive filter to provide a worst case ACS of 33 dB. An adaptive receive filter is more computationally efficient than a fixed receive filter when the required ACS is less than 23 dB, because the added complexity of measuring the out-of-channel interference is compensated for by the reduction in the required number of filter taps to achieve the ACS. Measurements of the out-of-channel interference show that currently the interference levels for which the maximum ACS of 33 dB is required are hardly ever reached in practice. For the currently measured interference levels an adaptive receive filter will be computationally more efficient than a fixed\ud receive filter 97% of the time. However, the current out-of-channel interference measurements might be on the optimistic side, because the loads of the UMTS networks are low. When these loads increase in the future, the out-of-channel interference levels may increase and the advantage in computational efficiency of the adaptive receive filter will be reduced

    Optimized Anisotropic Rotational Invariant Diffusion Scheme on Cone-Beam CT

    Get PDF
    Cone-beam computed tomography (CBCT) is an important image modality for dental surgery planning, with high resolution images at a relative low radiation dose. In these scans the mandibular canal is hardly visible, this is a problem for implant surgery planning. We use anisotropic diffusion filtering to remove noise and enhance the mandibular canal in CBCT scans. For the diffusion tensor we use hybrid diffusion with a continuous switch (HDCS), suitable for filtering both tubular as planar image structures. We focus in this paper on the diffusion discretization schemes. The standard scheme shows good isotropic filtering behavior but is not rotational invariant, the diffusion scheme of Weickert is rotational invariant but suffers from checkerboard artifacts. We introduce a new scheme, in which we numerically optimize the image derivatives. This scheme is rotational invariant and shows good isotropic filtering properties on both synthetic as real CBCT data

    Observation of negative differential conductance in a reverse-biased Ni/Ge Schottky diode

    No full text
    We report the experimental observation of negative differential conductance in a Ni/Ge Schottky diode. With the aid of theoretical models and numerical simulation we show that, at reverse bias, electons tunnel into the high electric field of the depletion region. This scatters the electrons into the upper valley of the Ge conduction band, which has a lower mobility. The observed negative differential conductance is hence attributed to the transferred-electron effect. This shows that Schottky contacts can be used to create hot electrons for transferred-electron devices

    Modeling and Compensation of Nonlinear Distortion in Horn Loudspeakers

    Get PDF
    Horn loaded compression drivers are widely used in the area where high sound pressure levels together with good directivity characteristics are needed. Major disadvantage of this kind of drivers is the considerable amount of nonlinear distortion. Due to the quite high air pressures in the driver the air is driven into its nonlinear range. This paper describes a technique to reduce the distortion caused by this phenomenon. Using a Digital Signal Processor (DSP), a feedforward compensation technique, based on an equivalent lumped parameter circuit, is implemented and tested in real–time in series with the loudspeaker. Measurement and simulation results are given. The overall conclusion is that a distortion reduction is obtained in the frequency span from 600 to 1050 Hz

    Spectrum Utilization and Congestion of IEEE 802.11 Networks in the 2.4 GHz ISM Band

    Get PDF
    Wi-Fi technology, plays a major role in society thanks to its widespread availability, ease of use and low cost. To assure its long term viability in terms of capacity and ability to share the spectrum efficiently, it is of paramount to study the spectrum utilization and congestion mechanisms in live environments. In this paper the service level in the 2.4 GHz ISM band is investigated with focus on todays IEEE 802.11 WLAN systems with support for the 802.11e extension. Here service level means the overall Quality of Service (QoS), i.e. can all devices fulfill their communication needs? A crosslayer approach is used, since the service level can be measured at several levels of the protocol stack. The focus is on monitoring at both the Physical (PHY) and the Medium Access Control (MAC) link layer simultaneously by performing respectively power measurements with a spectrum analyzer to assess spectrum utilization and packet sniffing to measure the congestion. Compared to traditional QoS analysis in 802.11 networks, packet sniffing allows to study the occurring congestion mechanisms more thoroughly. The monitoring is applied for the following two cases. First the influence of interference between WLAN networks sharing the same radio channel is investigated in a controlled environment. It turns out that retry rate, Clear-ToSend (CTS), Request-To-Send (RTS) and (Block) Acknowledgment (ACK) frames can be used to identify congestion, whereas the spectrum analyzer is employed to identify the source of interference. Secondly, live measurements are performed at three locations to identify this type of interference in real-live situations. Results show inefficient use of the wireless medium in certain scenarios, due to a large portion of management and control frames compared to data content frames (i.e. only 21% of the frames is identified as data frames)
    corecore